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Abstract
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1 Introduction

China sets a target in the 12th Five Year Plan (2011-2015) to spend 2.2% of its GDP on

R&D by 2015. To achieve the goal of building an innovation-driven economy by 2020, China

needs to address many resource, environmental and institutional challenges. Therefore,

a clear understanding of the status-quo of the research sector in China is necessary for

both policymakers and investors to optimize the development strategy and to improve the

effectiveness of investment performance.

In this paper, we study the productivity which is defined as the ratio of transforming

inputs into output in the frontier, and efficiency which refers to the ratio between real

output and the best-practice output in Chinese provincial research sector by using data from

2004 to 2012. We investigate particularly the impacts of knowledge spillovers through FDI

on the innovation output, mainly the domestic patent application. The reason is as follows.

Although knowledge is a non-rival public good, there exists social and political barriers which

prohibit free dissemination of information across countries. The use of knowledge and its

positive externalities can be limited and geographically localized (Jaffe et al. 1993; Audretsch

and Feldman,1996). The most important channels of breaking the geographic restrictions

is FDI. Therefore, it is expected that spillovers induced from FDI not only contribute to

the regional economic growth (Kuo and Yang, 2008), but also impact the productivity and

efficiency of regional innovation production. According to the World Bank statistics, China

has overtaken the U.S. as the top destination for FDI in the world market since 2009.

This implies that an accurate measurement of the performance of China’s research activities

should take into account the spillover effects of FDI.

We first develop a theoretical framework to disintangle the productivity and efficiency

effects. We then investigate the two effects empirically for Chinese provinces in the pe-

riod of 2004-2012 by employing both parametric and non-parametric approaches for this

study. Specifically, we use Poisson model to estimate the productivity effect due to FDI-

induced spillovers. Our results illustrate that spillovers as externalities of inflow of foreign

investment contribute positively to the productivity improvement of China’s overall research

performance. The data envelopment analysis is then applied to study the efficiency effect

of FDI. We have observed from statistics the regional heterogeneity in terms of FDI, R&D

expenditures, and the innovation output. Our analysis confirms that heterogeneous effects of

FDI on productivity and efficiency across regions. East region with high level of FDI benefits

largely from productivity improvement, while the efficiency effects are small. In the central

and west regions, the spillover effects of FDI contribute mostly to the efficiency improve-

ment rather than the increase in productivity. Such differences vary across different types of

innovation output as well. This study concludes that future policy of promoting innovation

at the provincial level should adjust the investment profiles based on the preferential innova-

tion output on the one hand, and optimize the complementary policy for FDI on the other
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hand to avoid the inefficient use of resources and reduce the potential crowding-out effects

of knowledge spillovers. Regional or inter-provincial governmental cooperation for resolving

the uneven distribution of FDI is necessary for the improvement of innovation efficiency in

both FDI-poor and rich regions.

Our paper is related to several strings of literature. In addition to the knowledge spillover

and innovation literatures (e.g., Jaffe 1986; Coe and Helpman 1995), there are now several

complementary frameworks for studying knowledge spillover effects of FDI in China. The

first includes studies trying to identify the types of FDI spillovers. For example, Lin et

al. (2009) provide with evidence of horizontal and vertical spillover effects from FDI in

China. Ito et al. (2012) further examine how the horizontal and vertical spillover effect of

FDI is different according to outcome by estimating both production function and patent

production function. The second group includes a series of papers focusing on the analysis

of FDI spillovers in selected firms or industry. Jeon et al. (2013) find that FDI spillover

effects vary depending on industries and technological level of indigenous firms. Zhang (2014)

report that FDI has large positive effects on China’s industrial performance and the effects

are much greater on low-tech manufacturing than medium- and high-tech industries. These

studies have focused on the complexity of inter-industry spillovers from FDI according to

firm or industry characteristics. The final group discovers the connections between FDI

and the innovation capacity. Fu (2008) studies the relationship between FDI and regional

innovation capabilities using data between 1998 and 2003. Li (2009) and Fu (2008) focus

on the innovation capacity using data up to the year 2005. Hu and Jefferson (2009) find

the growth of foreign direct investment in China is one of the major factors resulting in the

patent surge in recent years. Chen and Guan (2011) use a structural approach with partial

least squares to detect and untangle the periodically operating state of China’s regional

innovation systems

Our emphasis on the heterogeneous effects of different channels of FDI spillover effects

across regions, is different from, though complementary to, all the above mentioned groups of

papers.1 The strength of this paper is that, first, we have developed an analytical framework

to integrate the innovation efficiency into the knowledge production function, and thus both

productivity and efficiency effects are identified accordingly. This means that our analytical

framework makes it true to empirically investigate innovation performance by assessing the

resources devoted for research activities across regions in China. Second, inspired by Cheung

and Lin (2004) where they study the research sector in China from 1995 to 2000, our study

fills the gap where the available studies in the literature are outdated in terms of data periods

and the development phase of China’s research sector. In fact, China’s R&D activities started

to take off from the year 2004. According to the statistics from World Intellectual Property

1Different from this study where we focus on the regional differences of FDI spillovers, Bai et al. (2012),
Shang et al. (2012), Scherngell et al. (2014) investigate the general spillover effects between regions.
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Organization2, the number of patent application in China grows at an annual rate of around

30% from 26 thousand patent applications in 2000, less than a tenth of patent applications

of the U.S., to more than 700 thousand in 2013 which is 46% larger than the cases of the

U.S. Moreover, China’s continued strong economic growth fuels further increase of its R&D

investments. In fact, China surpassed Japan in terms of overall research spending in 2011

after a few decades of global R&D investment was dominated by Europe, the U.S. and Japan.

It is expected that China’s research expenditures will soon surpass those of Europe and the

U.S. in absolute terms. With such aggressive investment, China is experiencing a tremendous

change in its research profiles. To be competent and take its place among global R&D leaders,

China has to recognize its own competitive advantages and restructure the weaknesses which

have long existed in current innovation system. The study by Cheung and Lin (2004) is not

enough to illustrate the fast developing trend of the research activities in China. For this

purpose, an updated empirical study on the performance of China’s research sector at the

provincial level is necessary for both the central government and local authorities to optimize

their policy preferences and investment strategies in order to maximize the innovation output.

Finally, our empirical model specifications provide more reliable results for the investigation

of the determinants of innovation performance. Our model differs from Cheung and Lin

(2004) in several aspects. We utilize the Poisson estimation featuring count data for a panel

model. The R&D stock is constructed for knowledge production function and the FDI stock

is developed for the proxy of spillovers. We also address the endogeneity issues by using

lagged variables and generalized method of moments (GMM) estimator. Accordingly, our

findings in the empirical investigations guided by the theoretical framework with most recent

data source provide systematic evidences for the specificities of China’s innovation activities.

This paper is organized as follows. Section 2 provides the theoretical framework for this

study. Section 3 describes the econometric specification for the estimation of productivity

effects. The data description is also presented. Section 4 presents the estimation results.

Section 5 is a detailed description of the regional heterogeneity on China’s research sector

and its development over time. We then re-estimate our model by taking into account the

regional differences. Section 6 reveals the effects of spillovers on the innovation efficiency by

using a non-parametric method. Finally section 7 concludes the paper.

2 Theoretical predictions

In this section we develop theoretical predictions which will guide our empirical analysis.

We consider a one-period production model where research unit maximizes the intellectual

output. The creation of new knowledge dependents on the level of research activities (H),

2Data source is available from http://ipstats.wipo.int/ipstatv2/ipsDistributionchart.
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own knowledge (A0) and external knowledge (S) according to the following functional form:3

(1) Y = F (A0, H, S).

Nation-wide knowledge accumulation, international trade or foreign investment are typ-

ical sources for the external knowledge. In this paper, we focus on the external knowledge

spillovers as a result of FDI. Knowledge spillovers may contribute to the overall regional

innovation performance directly by expanding the knowledge base. In addition, spillovers

bring in advanced practices and experiences in innovation performance. Successful innova-

tion requires not only brilliant scientists and greater R&D investment, but also high-quality

decision-making, long-term development strategy, management techniques, coordination and

so on. Such “soft” factors, together with “hard” factors such as R&D manpower and in-

vestment, determine the productivity and efficiency of regional innovation performance. In

general, the knowledge (innovation output) production is affected by spillovers via two chan-

nels: (i) by entering the production as an additional input for productivity improvement;

spillovers affect the relative price of inputs, thus leading to induced innovation through input

augmentation (e.g.: Binswanger, 1974; Hayami and Ruttan, 1970). (ii) it affects the knowl-

edge output by impacting the innovation efficiency levels. Therefore, external knowledge S

affects not only the innovation efficiency E, but also the activity level H.

To introduce innovation efficiency into the knowledge production function, we follow the

suggestions by Afriat (1972) and Richmond (1974)4 by letting

(2) Y = A0 ·H(L,K, S) · E(S).

L and K are the research labor and R&D capital used for research activities. Accordingly,

A0 ·H(L,K, S) represents the production frontier, showing the maximum output that may

be obtained from given inputs when the inputs are used in the most efficient manner. E(S)

is a multiplicative random error taking values between 0 and 1 representing the innovation

efficiency.

The level of research activity H depends on how much research labor L and R&D cap-

ital stock K are involved in the researching process. The accumulation of R&D stock is

determined by the purposeful research investments, K = K(I). Based on the Frascati defi-

nition (OECD 2002), which is the internationally recognized methodology for collecting and

using research and experimental development (R&D) statistics, research covers three types

of activities: basic research, applied research and experimental development. Basic research

3Time subscript is omitted in this section.
4In Afriat (1972), he discussed the problem of estimating a production function and introduced a mul-

tiplicative error u to represent the inefficiency of production. This random variable takes values between 0
and 1. Richmond (1974) agreed with the separable feature and complements to Afriat (1972) by assuming
that u = exp(−z), where z has a Gamma distribution. Based on the count data feature, we will use the
Poisson error structure for this analysis.
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is experimental or theoretical work undertaken primarily to acquire new knowledge of the

underlying foundation of phenomena and observable facts, without any particular applica-

tion or use in view. Applied research is also original investigation undertaken in order to

acquire new knowledge. It is, however, directed primarily towards a specific practical aim

or objective. Experimental development is systematic work, drawing on existing knowledge

gained from research and/or practical experience, which is directed to producing new mate-

rials, products or devices, to installing new processes, systems and services, or to improving

substantially those already produced or installed.

We thus formulate that H is a function of three types of research investment:

(3) H ≡ H[L,K(IB, IA, ID), S] = H[L,K(I, αB, αA, αD), S] ,

where IB, IA, and ID are the R&D investment on basic research, applied research and

experimental development, respectively. αB, αA and αD are the shares of each investment

type in total R&D expenditure I, respectively. The marginal effect of each type of investment

is defined as:

∂Y

∂αn
= A0 ·

∂H(L,K, S)

∂K

∂K

∂αn
· E(S) ,(4)

where n ∈ {B,A,E} representing the research investment type, namely basic research (B),

applied research (A), and experimental research (E). In this framework, we can derive

following predictions:

Prediction 1: Output in R&D is affected not only by factor input increase (L and

K), but also by the structure of the investment (αB, αA and αD). In addition, knowledge

spillovers induced from FDI tend to increase the output through input augmentation.

From eq. (2), the marginal effect of external knowledge is given by:

(5)
∂Y

∂S
= A0 ·

∂H

∂S
· E + A0 ·H ·

∂E

∂S
.

We then define the elasticity of innovation frontier with respect to knowledge spillover

as ε = ∂H
∂S

S
H

, the elasticity of innovation efficiency with respect to knowledge spillover as

λ = ∂E
∂S

S
E

, equation (5) can be re-written as follows:

(6)
∂Y

∂S
=
A0H E

S
· (ε+ λ)


> 0, if λ > −ε ;

= 0, if λ = −ε ;

< 0, if λ < −ε .

The sign of ε is always positive as the knowledge spillover contributes to input augmenta-
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tion and final higher output. We label this as the productivity effects, as it implicitly increases

the productivity of labor and R&D capital by shifting the production frontier outwards. The

sign of λ is not clear. In general, an open economy may benefit from international knowledge

spillover which can improve the efficiency of innovation. However, as discovered in literature,

effects of FDI are double-edged. On the one hand, the newly invested foreign enterprises will

drive technology progress of indigenous firms through intensified competition and demon-

stration (Thompson 2002). Lack of competition in a market will give rise to inefficiency

and result in sluggish innovative activities (Fu 2008). On the other hand, intensive foreign

invested firms will result in “extrusion effects” on indigenous firms by crowding out local

innovation as foreign-invested firms possess both technology and cost advantages (Zeng et

al. 2009). There is empirical evidence in the literature supporting the negative effects of

spillovers (Aghion et al. 2005; Aitken and Harrison 1999; Kathuria 2000; Konings 2001; Hu

and Jafferson 2002; Reganati and Sica 2007; Zeng et al. 2009). The effects indicated by λ is

labeled as efficiency effects. The sign of (6) is determined by the relatively size of the two

effects.

Based on the facts discussed above, we can further derive following prediction in the case

of China:

Prediction 2: The spillover effect can be either positive or negative, which is determined

by the relative magnitude of two effects: the productivity effects indicated by ε, and the

efficiency effects reflected by λ. In particular, provinces with lagged innovation development

can benefit from FDI with positive externality (∂Y
∂S

> 0) through demonstration and intensified

competition, indicating higher or positive value of λ. Provinces with advanced innovation level

can suffer from lower or negative effects of spillovers (∂Y
∂S

< 0) as international competition

discourages local innovation through crowding out effect, reflecting by lower or negative value

of λ.

Following our theoretical framework, we will conduct empirical analysis to study the

productivity and efficiency effects respectively in the next sections.

3 Econometrics

3.1 Econometric specification

In the literature of statistical models of count data, the Poisson and negative binomial

models have been suggested for the estimation of the number of occurrences of event counts.

Similar to Hausman et al. (1984)5, we consider the following Poisson specification for the

5Hausman et al. (1984) develop a Poisson model to analyze the relationship between patents and R&D
expenditures.
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determination of province innovation in this paper:

PATi,t = exp(βl lnLi,t + βk lnKi,t + βbSBi,t

+βdSDi,t + βyPYi,t + βf lnFDIi,t + βDtDt) + ui,t
(7)

with ui,t is an error term; exp(·) is the exponential operator. Li,t is the number of personnels

working in the research sector in province i at time t; Ki,t is the R&D stock in province i

at time t. Both variables are the key inputs and are expected to have positive impacts on

research output. Taking the applied research expenses as benchmark, we introduce two share

variables to reflect the investment structure. SBi,t and SDi,t are the share of expenses on

basic research and experiment research, respectively. The effects of the investment structure

are unclear as one type of patents may prefer a specific research investment to others. PYi,t

is the per capita real GDP in province i at time t, which accounts for the fact that provinces

are at different stage of economic development as well as different level of research frontier.

A higher level of per capita GDP indicates that the respective province is at the research

frontier, and hence it becomes relatively difficult to innovate. PYi,t also reflects the absorptive

capacity of a province. A higher level of per capital income indicates that a high level of

absorptive capacity of knowledge and spillovers, contributing positively to the innovation.

FDIi,t is the stock of FDI in province i at time t which shows the degree of spillover effect

of FDI. Dt is the time dummies capturing the overall trend of propensity to research.

PATi,t is the number of patent application for province i at time t. As suggested by Joutz

and Gardner (1996) and Abdih and Joutz (2006), patent application is a good approximation

for technological output. We thus use the number of patent applications as a measure of R&D

output. Cheung and Lin (2005) discuss the limitations of using this proxy, however, they

also argue that patent applications are preferred compared to other suggested proxies since

it includes both product and process innovations. To reflect the quality of the knowledge

output, we proxy knowledge creation at a point of time by the number of patent applications

and the number of patent granted.

All explanatory variables used in equation (7) are lagged for one year for two reasons.

Firstly, the output of an innovation production in a given year is realized one year later

(Fu 2008). Secondly, using one year lag for the independent variables removes the possible

endogeneity of those variables.

As this study focuses on the effects of FDI, we further consider the potential endogeneity

problem of using FDI as a regressor, and hence introduce instrumental variables to address

this issue. To identify the effects of FDI on research output, we need instruments that are

correlated with FDI volumes, but not with patent. In literature, many studies suggest real

exchange rates and lagged values of FDI as instruments(Blonigen 1997, Klein and Rosengren

1994, and Wheeler and Mody 1992). As our study focuses on the provinces in one country,

the exchange rate is the same for all provinces, which may not truly reflect the change of FDI
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across regions. Instead, we introduce the variable “FDIIN” which measures the intensity of

FDI in one region over time. It is calculated as the ratio between the FDI inflow and GDP

at the provincial level.6

With the two variables FDI intensity and lagged FDI flow as instruments,7 we then

use the Generalized Method of Moment (GMM) estimator for our econometric analysis

(Mullahy 1997; Cameron and Trivedi 2013; Wooldridge 2010). The equation to be estimated

is formulated as follows:

PATi,t = exp(βl lnLi,t−1 + βk lnKi,t−1 + βbSBi,t−1

+βdSDi,t−1 + βyPYi,t−1 + βf lnFDIi,t−1 + βDtDt) + ui,t
(8)

3.2 Data

This study is based on a balanced China panel data set for a sample of 30 provinces

observed over the period 2004 to 2012 ( t = 2004-2012). Our study focuses on provinces,

autonomous regions, and municipalities in mainland China. Due to incomplete information

in statistics, Tibet is excluded from this study. For simplicity, all the units of observations are

labeled as provinces thereafter. The data set is based on the information taken from China

Statistical Yearbook (2005-2013) and China Statistical Yearbook on Science and Technology

(2005-2013).

R&D activity is a process of knowledge accumulation and technological development

as a result of R&D investment. The corresponding assests—the stock of knowledge—are

intangible assests which are unobservable and difficult to measure in terms of values. The

main practical measurement option is to approximate the value of knowledge by capitalized

R&D expenditures, in which the expenditures are formed into R&D capital stocks via the

perpetual inventory method, Kt+1 = (1 − δ)Kt + It. Following Griliches (1980), the initial

R&D stock level is computed as K0 = R̄/(g + δ0) where g is the growth rate of R&D

expenditures, and R̄ is the R&D expenditure in period 0. The depreciation of R&D capital

δ is assumed to be 15% (Kuo and Yang 2008). The FDI stock is constructed in a similar

way. As it is difficult to obtain the deflators for R&D expenditures and FDI flows, we use

the provincial GDP deflators to transform the nominal values from statistics into real values.

The descriptive statistics of all variables used in this study are listed in Table 1.

According to China’s statistics, all provinces are classified into three regions: the east

region including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian,

6FDI inflow values are converted to real values in Chinese Yuan. GDP refers to the real GDP values in
Chinese Yuan.

7In order to verify the validity of the instruments, we estimate a classic fixed effects model. To test for
weak instruments, we compute the Cragg-Donald Wald F test statistic. The value of this statistic (140) is
larger than the critical value at 10% level of significance (19.93) suggested by Stock-Yogo (2003). Therefore,
we reject the hypothesis that instruments are weak. The Hansen J statistic for testing the overidentification
of all instruments does not reject the null hypothesis of valid instruments (Chi-sq(1)=0.11, P-Value=0.74).
All these results show that we are able to find reasonable instruments.
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Table 1: Descriptive statistics of variables. Source: China Statistical Yearbook and China
Statistical Yearbook on Science and Technology, various years.

Variable Mean Std. Dev. Min Max

Number of patent (1000 units) 28.22 51.73 0.12 472.66
Number of invention (1000 units) 7.42 12.78 0.05 110.09
Number of utility model (1000 units) 10.19 15.96 0.04 108.60
Number of design (1000 units) 10.61 25.84 0.03 255.47
Research personnel (1000 persons) 69.21 75.49 1.21 492.33
Total research expenses (billion in 2004 Yuan) 14.10 18.38 0.10 99.63
R&D stock (billion in 2004 Yuan) 43.77 59.73 0.36 319.58
Share of expenses in basic research 0.07 0.05 0.01 0.43
Share of expenses in applied research 0.14 0.08 0.03 0.42
Share of expenses in experimental development 0.79 0.12 0.21 0.96
Per capita income (2004 Yuan/person) 22427.10 14253.40 4297.64 74661.41
FDI flow (billion in 2004 Yuan) 17.01 24.70 0.23 105.05
FDI stock (billion in 2004 Yuan) 87.22 129.62 1.55 564.86
FDI intensity (%) 1.67 2.19 0.19 20.21

Shandong, Guangdong, Hainan; the central region including Shanxi, Jilin, Heilongjiang,

Anhui, Jiangxi, Henan, Hubei, Hunan; and the west region including Chongqiong, Sichuan,

Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia.

4 Knowledge spillovers and innovation production

The regression results are shown in Table 2. Model (1) and (2) use the provincial patent

application and patent granted as the dependent variable, respectively. The results are in

line with each other. As the Poisson model is in the form of log-link, so the estimated

coefficient can be interpreted as elasticity if the explanatory variables are expressed by the

log form in the econometric model.

The results show that both the number of personnels and the quantity of R&D stock

positively contribute to the realization of new patent, and are statistically significant in both

cases. However, the magnitude of the coefficients varies between two models. In the model

with patent application as the dependent variable, R&D stock has a stronger impact to the

innovation output; while in the model with patent granted as the dependent variable, the

research labor is more important to produce innovation. We know that patent applications

are varied in terms of quality. By comparing the results using two different dependent

variables, we find that it is easy to fulfill the requirement of filing a patent application by

investing in R&D activities. However, the researchers will have to double their efforts to

guarantee the patent application to be granted successfully.

When we look at the investment structure, the coefficients of share of basic expenses

“SB” and share of experimental expenses “SE” are positive and statistically significant.

This suggests that these two types of investment are more important in terms of knowledge

production, taking the applied research expenses as the benchmark. The spillover effects
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Table 2: Regression results using different proxies for dependent variable

Model 1 Model 2 Model 3 Model 4 Model 5

Patent
VARIABLES application granted invention utilitymodel design

log(FDI)−1, 0.287*** 0.291*** 0.222*** 0.195*** 0.467***
(0.043) (0.047) (0.030) (0.053) (0.070)

log(L)−1, 0.244* 0.513*** 0.164 0.389*** 0.036
(0.132) (0.149) (0.104) (0.140) (0.228)

log(K)−1, 0.626*** 0.366*** 0.727*** 0.506*** 0.771***
(0.121) (0.137) (0.096) (0.124) (0.213)

SA−1, 1.767** 1.870* 3.461*** 0.619 1.306
(0.884) (0.999) (0.822) (0.932) (1.373)

SD−1, 1.297*** 1.484*** 0.542 0.989** 2.469***
(0.389) (0.441) (0.385) (0.423) (0.637)

log(PY)−1, -0.230** -0.193* -0.089 -0.227** -0.534***
(0.098) (0.108) (0.080) (0.108) (0.172)

Constant -13.785*** -11.966*** -16.001*** -10.956*** -18.379***
(1.103) (1.234) (0.879) (1.177) (1.911)

Time dummy Yes Yes Yes Yes Yes
Number of Obs. 240 240 240 240 240

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Variable “SA” is the share of expenses in basic research; variable “SD” is the share of expenses in
experimental development; variable “PY” is the per capita income. The subscript “-1” indicates 1-year lag.
Source: author’s estimation based on Poisson model.

are estimated through the variables FDI. It shows that 1% increase in FDI, we can expect

approximately 0.3% increase in patent application.

As the types of patent applications can also matter, we distinguish the three patent types

by using each of the individual type of patent application as the dependent variable. We

re-estimate the model by using each of the three patents as the dependent variable. The

results are presented in the last three columns of Table 2 (Model 3-5).

There exists a large difference between patent types. Specifically, the effect of personnel is

weaker in the creation of invention patent. The increase in total R&D stock will significantly

increase the possibility of innovation outcomes: a 1% increase in total investment will lead

to 0.7% increase in invention patent application, 0.5% increase in utility model application,

and 0.8% increase in design patent application. From the estimated coefficients of two share

variables “SB” and “SE” we find each type of patents has its own preference toward a

particular type of investment. For invention patent, investment used for basic research is

the crucial factor for success. Among the three patent outputs, the return of experimental

expenses is the highest on design patent since the estimated coefficient of “SE” is the largest

compared to other two types of patent outputs. This suggests that if a firm is marketed

for new designs, resources should be directed toward experiment; or more financial budget
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needs to be allocated to basic research if the firm is oriented for invention patent.

The effect of FDI is the strongest on design patent, followed by invention and utility

model. Such ranking in the degree of FDI effects is reasonable because FDI introduces the

channels for exchanging ideas with international market, bringing together both domestic

and foreign designers. This will significantly smooth the way of transferring knowledge and

hence contribute to the productivity increase of producing innovation output. Similarly,

invention patent requires the most sophisticated techniques in general, inflow FDI from

developed regions is always associated with advanced technologies, management practice,

and rich experiences, which can substantially improve the productivity of domestic research

performance. Patent for utlity model is less dependent on the FDI because it is usually less

technically complicated and its requirement of novelty is low compared to invention.

5 Regional innovations in China

In this section, we highlight the regional heterogeneity of China’s research activities.

We first show using the official statistics the differences in terms of R&D investment and

R&D output. By taking into account the regional heterogeneity and policy preferences, we

re-estimate our model with additional specifications and discuss how the spillover effects of

FDI differ across regions.

5.1 R&D investment

The growth of R&D expenditure in China is substantial, from 159 billion RMB in 2004

to 1030 billion RMB in 2012. In general, total expenditure can be further disaggregated into

three groups based on the usage: basic research, applied research and experimental devel-

opment. Table 3 provides detailed information on the composition of the total expenditures

over time. Overall, basic research takes less than 7% of the total research investment, while

more than 70% of the research funds are used in experimental development.

Table 3: The distribution of R&D investment by research type and by region. Source: China
Statistical Yearbook for Science and Technology, various years

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012
Total expenditure in billion RMB 159 201 249 371 462 580 706 869 1030

By research type
Share of basic research in % 6.28 5.72 6.41 4.35 4.50 4.66 4.59 4.74 4.84

Share of applied research in % 16.88 15.02 13.27 10.48 10.40 12.60 12.66 11.84 11.28
Share of experimental development in % 76.84 79.25 80.22 85.17 85.10 82.75 82.75 83.42 83.87

By region
East region expenditure in % 70.60 70.45 70.02 72.67 72.09 69.84 70.61 71.17 70.80

Central region expenditure in % 15.17 15.39 16.79 15.44 16.19 17.67 17.01 16.85 17.15
West region expenditure in % 14.23 14.16 13.18 11.90 11.72 12.49 12.38 11.98 12.04
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We can also observe that over two thirds of national R&D expenditures flow into the

east region, followed by the central region with a share between 15% and 18%. The research

expenditure in the west region takes up less than 15% of the national total. This regional

distribution also reflects the relative level of economic development. With the highly devel-

oped economies in the east region, the available financial sources from the local government

and enterprises are abundant compared to the less developed regions. The top five desti-

nations of R&D investment (Jiangsu, Guangdong, Beijing, Shanghai and Shandong) receive

roughly 50% of the total research money in the country, suggesting a high degree of spacial

agglomeration of innovation activities in China. Furthermore, it is worth noting that even

with the increasing value of national R&D expenditures, the share of research expenses in

the west region declines over time from 14% in 2004 to 12% in 2012. This implies that the

growth rate of research activities in the west region is lagged behind the other two regions

or the value of the projects conducted in the west region is relatively low.

5.2 R&D output

According to the patent law of China, all patent applications can be divided into three

categories: invention, utility model and external design. Invention patents are regarded as

the major innovation with the requirement of “novelty, inventiveness, and practical applica-

bility” (Cheung and Lin, 2004). The patents for utility model and design have less stringent

requirements for application. The share of invention in total domestic patent application is

relatively low, remains at the level of about 25-27% for the last decade, though the total

patent applications rise substantially.

As we can see from Figure 1, all of the three types of patent applications increase sig-

nificantly between 2004 and 2012. However, the share of invention remains between 2004

and 2012. A large share of the patent application are still utility model and external design

patents. Moreover, around 80% of the domestic patent applications are originated from the

east region. The central and west regions are far behind the level of the east region. Accord-

ing to the statistics, the top five provinces in terms of invention are Jiangsu, Guangdong,

Beijing, Shanghai, Shandong, all of which are in the east region, account for more than 50%

of total patent application in 2012.

5.3 Regional heterogeneity and policy preferences

There are substantial regional differences among China’s east, central and west regions in

terms of the quantity of FDI inflow, R&D capability, and the level of economic and technology

development. We can see the regional heterogeneity in terms of research investment in Table

3. Figure 2 illustrates the regional distribution of foreign invstment over time. The east

region obtains more than 80% of the total investment. Therefore, it is expected that the

spillover effects of FDI on productivity may also exhibit regional differences.
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Figure 1: Domestic patent applications in China by types and by regions. Data source:
National Bureau of Statistics China

Note: According to China’s statistics, all provinces are classified into three regions: the east region

including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,

Hainan; the central region including Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan; and

the west region including Chongqiong, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia,

Xinjiang, Guangxi, Inner Mongolia.

We first introduce regional dummies into equation 8. This is because we believe there

exists persistent effects common to provinces within the same region while vary across re-

gions. For example, some preferential tax policies apply to the coastal provinces, and the

“China’s Western Development Program” can benefit the provinces in the west region. Over

time, the three regions are possibly to form certain regional fixed effects which could affect

the innovation production, but not be fully captured through provincial-specific factors. The

results in Table 4 show a clear evidence of regional difference in research productivity. The

estimated coefficient of regional dummy “WEST” is statistically significant. Choosing the

central region as reference, the positive sign of “WEST” indicates that the west region has

higher output with equal inputs as other regions. The east region does not differ statistically

from the central region. By comparing the coefficients of FDI in Table 4 with those in Table

2, we find the spillover effects of FDI are stronger when taking into account the regional

effects.

In addition, to study the spillover effects of FDI at the regional level, we re-estimate the

equation 8 for each of the three regions using the poisson model. All the results are shown

in Table 5.

We find that the spillover effect of FDI on patent applications is positive and statistically

14



Figure 2: Inflow of total foreign investment in China by region. Data source: National
Bureau of Statistics China, various years

Note: According to China’s statistics, all provinces are classified into three regions: the east region

including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong,

Hainan; the central region including Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan; and

the west region including Chongqiong, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia,

Xinjiang, Guangxi, Inner Mongolia.

significant in the east region. With the estimated coefficient of 0.42, the spillover effects of

FDI influence the number of patent applications in the east region strongly. The estimated

coefficients of FDI in the central and west regions are not statistically significant. Among

the three regions, the relatively high and significant value of the FDI coefficient in the east

region suggests that the east region benefits the largest productivity boom from spillovers.

In the west and central region, the spillover effects of FDI are much smaller.

Moreover, there are substantial differences for the spillover effects on the three types of

patent in terms of the magnitude of the effects across regions. In the east region, invention

and design exhibit the strong and positive FDI spillover effect, while the spillover effect of

FDI on utility model patent is insignificant. The coefficients of FDI for patent and design in

the west region are positive and significant, however, the size of the effects is much smaller

compared to the east region.

The structure of the investment composition does matter in terms of productivity. The

coefficients of basic research investment are always positively and statistically significant in

the east region, insignificant in the central region, and negatively, significant in the west

region, compared to the reference of applied research investment. This may due to the fact
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Table 4: Effects of regional heterogeneity on domestic research activities

Model 6 Model 7 Model 8 Model 9 Model 10

Patent
VARIABLES application granted invention utilitymodel design

log(FDI)−1, 0.315*** 0.302*** 0.267*** 0.170** 0.578***
(0.058) (0.060) (0.044) (0.068) (0.096)

log(L)−1, 0.328** 0.658*** 0.175 0.459*** 0.145
(0.148) (0.160) (0.109) (0.161) (0.249)

log(K)−1, 0.564*** 0.270* 0.710*** 0.464*** 0.662***
(0.130) (0.142) (0.097) (0.134) (0.232)

SA−1, 2.088** 2.136** 3.909*** 0.463 2.578*
(0.910) (0.959) (0.877) (0.945) (1.370)

SD−1, 1.291*** 1.381*** 0.656* 0.877** 2.716***
(0.405) (0.428) (0.394) (0.439) (0.632)

log(PY)−1, -0.223** -0.229** -0.023 -0.275*** -0.428**
(0.102) (0.103) (0.093) (0.100) (0.188)

East 0.053 0.193* -0.101 0.140 -0.105
(0.120) (0.109) (0.104) (0.111) (0.213)

West 0.194** 0.276*** 0.126** 0.041 0.400***
(0.078) (0.078) (0.062) (0.079) (0.129)

Constant -14.070*** -11.303*** -17.555*** -9.630*** -21.088***
(1.819) (1.789) (1.490) (2.014) (2.666)

Time dummy Yes Yes Yes Yes Yes
Number of Obs. 240 240 240 240 240

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note: Variable “SA” is the share of expenses in basic research; variable “SD” is the share of expenses in
experimental development; variable “PY” is the per capita income. The subscript “-1” indicates 1-year lag.
“East” refers to the east region including Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang,
Fujian, Shandong, Guangdong, Hainan; “West” refers to the west region including Chongqiong, Sichuan,
Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia. Source: author’s
estimation based on Poisson model.

that the three regions are at different stage of innovation development, reflected by the total

number of patent applications. The east region conducts the innovation at the advanced level

where new patents are mainly dependent on the basic research. The central region is less

advanced in innovation development where all the three types of research investments are

indifference for innovation output. The west region is at the lowest stage of the innovation

process, and most of the patent applications are the results of applied research rather than

basic research investment.

The coefficients of research personnel are positive and statistically significant in the east

and central region, and insignificant in the west region. Instead, the coefficients of R&D

stock are positive and statistically significant in the east and west region, and insignificant

in the central region. All of these suggest regions have to identify their innovation priorities

and modify the innovation inputs accordingly to maximize the innovation output.

The per capita income shows positive impacts in the east region, but only significant
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for invention. The coefficients of the per capita income are negative in the central and

west region. This confirms our conjecture that the east region is at the advanced stage

of innovation development, representing a high level of absorptive capacity contributing

positively to the productivity on the one hand, and showing a high level of difficulty for new

innovation contributing negatively to the productivity on the other hand. In the central and

west region, the positive effects of absorptive capacity are much smaller due to the small size

of own knowledge stock, and hence the negative effects dominate.

6 Knowledge spillovers and innovation efficiency

In this section, we are particularly interested in the effects of spillovers on the innovation

efficiency in the presence of FDI. We estimate and compare the innovation efficiency in the

case with and without spillover effects of FDI.

6.1 Non-parametric estimation of innovation efficiency

In the literature of efficiency analysis, both parametric (mostly known as Stochastic

frontier analysis or SFA) and non-parametric (widely known as Data envelopment analysis

or DEA) approaches are commonly used to evaluate the efficiency of a number of producers.

In this section, we employ DEA method to estimate the innovation efficiency across Chinese

provinces. There are several reasons for the modeling choice. DEA is able to handle multiple

input and multiple output models, hence we can include three types of innovation outputs

separately in one model. It does not require any assumption of a functional form between

inputs and outputs, and both inputs and outputs can have different units. This is particularly

an advantage in the case with limited data on inputs and output price and other cost. Finally,

there is no Poisson specification available for SFA estimations, and it is difficult to deal with

the endogeneity in SFA.

In the DEA framework, for any given time t, let Xi,t be the vector of inputs into a

producer, usually referred to as a decision making unit or DMU i, i.e. province i in this

study. Let Yi be the corresponding vector of outputs. If X0,t and Y0,t are the inputs and

outputs of a DMU for which we want to determine its efficiency, the measure of efficiency

for DMU0,t at time t is given by the following linear program:

min
θt,λi,t

θt

s.t. :∑
λi,tYi,t ≥ Y0,t,∑
λi,tXi,t ≤ θX0,t,

λi,t ≥ 0(9)
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where λi,t is the weight given to DMU i in its efforts to determine DMU0,t and θt is the

efficiency of DMU0 at time t.

In this paper, the output vector includes the three types of patent applications, namely

invention patent INTi,t, utility model UTIi,t and design patent DESi,t. In terms of innova-

tion input, the basic inputs include the number of personnels working in the research sector

Li,t, the R&D stock Ki,t, the share of basic research expenses SBi,t and the share of exper-

imental research expenses SEi,t. Again, all the basic inputs are lagged by one year. These

are the inputs used to estimate the reference efficiency levels which we assume to be EF ref
i,t .

To study the effects of FDI on efficiency, we consider two modeling options. In the

reference model the four basic inputs are used. In the model variation, we add the lagged

FDI stock FDIi,t as the additional input, and re-estimate the efficiency using the above

mentioned modeling approach. Assuming the newly estimated efficiency to be EF fdi
i,t , we are

able to calculate the effect of FDI on efficiency by comparing the two efficiency scores:

(10) Contributioni,t = (
EF fdi

i,t

EF ref
i,t

− 1)× 100%.

6.2 Innovation efficiency and the effects of spillovers

Table 6 shows the estimated efficiency levels using the reference model and one variation

where FDI is included as one of the production inputs. The original efficiency level is

estimated without spillover variables (i.e. FDI). It indicates that the efficiency level of one

province is associated with the level of economic development. The most efficient provinces

are developed regions in terms of per capita GDP. For instance, Zhejiang, Jiangsu and

Shanghai are the regions with the highest economic development. In the contrary, less

developed regions in terms of per capita GDP represent the less efficient provinces to produce

new patents, including provinces such as Inner Mongolia, Qinghai and Gansu.

Table 6 also shows the estimated efficiency level with FDI as a proxy variable for spillover.

When comparing the efficiency levels with the original ones, it is interesting to see that there

exists regional clusters in terms of the efficiency effects of FDI. Most provinces in the central

and west regions show a large increase in innovation efficiency; while in the east region,

the impacts of FDI on innovation efficiency are small, or even negative. In general, most

of the less efficient provinces catch up by exploiting the positive effects of FDI induced

spillovers, while the efficient provinces are less likely to benefit from efficiency improvement

and may even experience a decline in their respective efficiency levels. One explanation

for this may be that the impacts of spillover on efficiency depends on the level of research

activities in individual province. Put differently, if a province is at the beginner stage of

research activities, spillovers will bring in new ideas which form a complementary element

for creating new knowledge. However, when a province is at the advanced stage of conducting

research, each unit of spillovers actually has smaller marginal returns compared to the unit
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Table 6: Comparison of the estimated provincial average efficiency levels in the period 2007-
2012 between with and without spillover effects

Region Province Efficiency score Contribution
w/o FDI w/ FDI of FDI (%)

East Beijing 0.95 1.00 5.72
Tianjin 0.86 0.89 4.07
Hebei 0.51 0.60 17.46
Liaoning 0.69 0.71 1.70
Shanghai 0.96 0.96 0.00
Jiangsu 0.92 0.93 0.74
Zhejiang 1.00 1.00 0.00
Fujian 0.63 0.63 0.00
Shandong 0.95 1.00 5.81
Guangdong 0.97 0.97 0.00
Hainan 1.00 1.00 0.00

Central Shanxi 0.48 0.62 27.63
Jilin 0.50 0.51 3.12
Heilongjiang 0.55 0.85 56.53
Anhui 0.68 0.78 15.08
Jiangxi 0.40 0.41 2.06
Henan 0.76 1.00 32.15
Hubei 0.66 0.91 38.14
Hunan 0.78 0.93 18.99

West Inner Mongolia 0.46 0.46 0.10
Guangxi 0.73 0.74 0.38
Chongqing 0.84 0.98 16.79
Sichuan 0.56 0.99 75.54
Guizhou 0.88 1.00 13.70
Yunnan 0.66 0.70 5.73
Shaanxi 0.47 0.87 85.90
Gansu 0.46 0.70 53.39
Qinghai 0.31 0.40 28.77
Ningxia 0.51 0.52 2.43
Xinjiang 0.87 0.93 7.22

* Note: Contribution is calculated to reflect the change in efficiency level relative to the original efficiency

level. The efficiency levels reported in the table are the average values between 2005 and 2012. Source:

author’s estimation based on DEA method.

of spillovers at the beginner stage, which lowers efficiency effects of FDI. For example, with

fast economic development, Shanghai attracts research labors and takes a leading role in

building its technology level, catching up with its peers in other countries. The inflow of

FDI from other countries brings in the international competition which has double-edged

effects on indigenous firms (Zeng et al. 2009). On the one hand, with intense demonstration

and competition from foreign invested enterprises, indigenous firms tend to make further

technology progress in order to survive in the market. On the other hand, the mass entrance

of foreign invested enterprises into the local market leads to extrusion effects on indigenous

firms. Apparently, the results shown in Table 6 imply that for developed provinces such

as Shanghai and Fujian, the extrusion effects and the competition effects are canceled out.

For some provinces (for example, Shaanxi, Gansu and Qinghai) which are less developed

in terms of technology and FDI, the inflow of FDI stimulates innovation and results in an

improved efficient use of normal inputs including research labor and investment.

Figure 3 is a scatter plot taking the elasticity of innovation efficiency as the y-axis and

taking the average patent applications as the x-axis. This plot confirms the robustness of the
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Figure 3: Regions with high level of innovation development tend to have lower efficiency
elasticity

Source: average patent application is based on the China Statistical Yearbook (various years); elasticity of

innovation efficiency is based on author’s own calculation.

theoretical prediction 2 that regions with high (low) level of innovation development are less

(more) possibly to be beneficial from FDI spillovers and signaled with lower (high) efficiency

elasticity.

7 Concluding remarks

This study fills the gap between the strong government policy direction for innovation

growth and the rarely available studies on the heterogeneous effects of productivity and

efficiency of research activities across regions in China. By presenting an empirical study on

China’s research sector, this paper quantitatively shows the regional differences of provincial

innovation productivity and efficiency in the presence of FDI-induced spillovers.

With Chinese provincial data for the period of 2004-2012, we find that spillovers induced

from FDI have positive and statistically significant effects on the productivity of China’s

innovation activities. We also find with quality controlled granted patent application as

dependent variable, the estimated coefficients for research personnel double. This implies

that having a patent application to be granted successfully the researchers have to double

their marginal productivity.

Specifically, our results show that each type of innovation outputs has significantly varied
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demand for research personnel and investment. The structure of the investment profile also

plays a significant role in determining the innovation output. Our study confirms the well-

known regional heterogeneity existing in China as well. This regional heterogeneity has a

strong impact on the spillover effects of FDI, hence on the productivity and efficiency of

regional innovation inputs. The productivity effects of FDI spillovers are strongest in the

east regions. In terms of the types of innovation, FDI spillovers affect patent application of

invention and design more than that of utility model.

Our non-parametric analysis of the innovation efficiency suggests that on average the ef-

ficiency level of one province is associated with the economic development of that province.

The spillover effects from FDI exhibit double-edged effects on the efficiency level. For

provinces with less developed technology levels, the spillovers bring in positive external-

ity by enforcing the indigenous firms to do more innovation and finally boost the innovation

output in that province. This also reflects these provinces try to catch up with their peers

with the help of external knowhow. However, the negative extrusion effects will start to

cancel out the positive effects of FDI if a province belongs to the regions with advanced level

of technology. This is because foreign innovation can be treated as competitive products

to domestic market. Increased foreign investment in these regions will intensify the market

competition and foreign innovation is thus a substitute for local innovation. This substitu-

tion effect will finally crowd out local innovations as it is risky or costly to conduct research

when foreign knowledge spillovers are of high standard and competitive.

There are several policy implications from above results. First of all, local firms or regional

governments are required to carefully evaluate their investment strategy in terms of funding

for three types of research activities, depending on which innovation direction (output) the

province or firm is moving on. Secondly, though the number of patent applications is a

good indicator for the achievement of top management, a thoughtful management needs to

motivate and provide incentive for the productivity increase of research labors since a granted

patent requires more efforts from researchers than a simple patent application. Finally, the

underlying spillover effects of FDI are dependent on the level of innovation development of

one region. The skewed distribution of FDI inflow in China has lead to the inefficient use of

resources and reduces the positive impacts on innovation efficiency in regions where FDI is

over flooded into. Policies in the regional level for resolving the unequal distribution of FDI

can benefit both FDI poor and rich regions.
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